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DISTURBANCE BY FIRE FREQUENCY AND BISON GRAZING MODULATE 
GRASSHOPPER ASSEMBLAGES IN TALLGRASS PRAIRIE 

ANTHONY JOERN' 

Division of Biology, Kansas State University, Manhattan, Kansas 66506 USA 

Abstract. Understanding determinants of local species diversity remains central to 
developing plans to preserve biodiversity. In the continental United States, climate, grazing 
by large mammals, fire, and topography are important ecosystem drivers that structure 
North American tallgrass prairie, with major impacts on plant community composition and 
vegetation structure. Frequency of fire and grazing by bison (Bos bison), through effects 
on plant community composition and altered spatial and structural heterogeneity of veg- 
etation in tallgrass prairie, may act as bottom-up processes that modulate insect community 
species richness. As previously seen for plant species richness, I hypothesized that grazing 
had more impact than fire frequency in determining species richness of insect herbivore 
communities. I examined this prediction with grasshoppers at Konza Prairie, a representative 
tallgrass prairie site in which fire frequency and bison grazing are manipulated over long 
terms with landscape-level treatments. 

Topographic position (upland vs. lowland) and fire frequency (1-, 2-, 4-year intervals, 
and unburned) did not significantly influence grasshopper species richness or indices of 
diversity, while grazing had significant effects. On average, I found -45% more grasshopper 
species and significantly increased values of Shannon H' diversity at sites with bison 
grazing. Species abundances were more equally distributed (Shannon's Evenness Index) in 
grazed sites as well. No significant interactions among burning and grazing treatments 
explained variation in grasshopper species diversity. Grasshopper species richness respond- 
ed positively to increased heterogeneity in vegetation structure and plant species richness, 
and negatively to average canopy height and total grass biomass. Variation in forb biomass 
did not influence grasshopper species richness. A significant positive relationship between 
grasshopper species richness and overall grasshopper density was observed. Species rich- 
ness increased marginally as watershed area of treatments in grazed areas increased, but 
not in ungrazed areas. Disturbance from ecosystem drivers operating at watershed spatial 
scales exhibits strong effects on local arthropod species diversity, acting indirectly by 
mediating changes in the spatial heterogeneity of local vegetation structure and plant species 
diversity. 

Key words: Acrididae; disturbance, habitat heterogeneity, Konza Prairie; long-term study; Phas- 
mida; prescribed burning; Tettigoniidae. 

INTRODUCTION 

Specifying local determinants of species diversity is 
a grand challenge in ecology, one that requires an un- 
derstanding of the interaction between the regional spe- 
cies pool and the ecological processes that filter this 
pool to facilitate establishment and ultimately deter- 
mine local coexistence (Ricklefs and Schluter 1993, 
Huston 1994, Rosenzweig 1995, Mauer 1999, Gaston 
and Blackburn 2000, Collins et al. 2002). Large-scale 
processes can influence ecological responses at many 
scales (Rosenzweig 1995, Davidowitz and Rosenzweig 
1999), and ecosystem drivers such as grazing, fire, and 
climate can have important consequences for under- 
standing diversity at many levels (Collins and Steinauer 
1998, Collins et al. 1998, 2002, Knapp et al. 1998a, 
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1999, 2002). Often left unresolved at local levels are 
the relative contributions of intermediate to larger scale 
factors acting over broad landscapes for understanding 
underlying mechanisms that determine local species 
richness, and how these processes interact (Frank et al. 
1998, WallisDeVries et al. 1998, Keesing 2000, Fuhl- 
endorf and Engle 2001). This study investigates effects 
of long-term, large-scale disturbance by fire and graz- 
ing to local species diversity of the Orthoptera, an 
abundant insect herbivore assemblage in grasslands. 

Arthropods contribute significantly to grassland bio- 

diversity (Miller 1993, Tscharntke and Greiler 1995, 
Arenz and Joern 1996, Jonas et al. 2002, Fay 2003), 
community-level trophic dynamics (Fagan and Hurd 
1991, Moran et al. 1996, Moran and Hurd 1998, Fagan 
et al. 2002), and ecosystem function (Curry 1994, Be- 
lovsky and Slade 2000, Blair et al. 2000, Hunter 2001, 
Jones et al. 2002, Meyer et al. 2002). While contrib- 
uting significantly to grassland structure and function, 
ecological assemblages of grassland invertebrates vary 
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significantly in time and space in response to local 
biotic and abiotic conditions (Belovsky and Joern 1995, 
Collins and Steinauer 1998, Kaufman et al. 1998). 
These conditions are influenced by complex, large- and 
small-scale disturbances such as fire and grazing along 
with effects of climatic variability (Evans 1984, 
1988a, b, Jonas et al. 2002, Fay 2003). 

Fire and grazing by large mammals are large-scale 
disturbances that act as primary ecosystem drivers in 
North American tallgrass prairie (Axelrod 1985, Col- 
lins and Wallace 1990, Pfeiffer and Steuter 1994, Cop- 
pedge and Shaw 1998, Knapp et al. 1998b). Histori- 
cally, tallgrass prairie burned regularly with an ap- 
proximate return interval of 3-4 years (Knapp et al. 
1998a). Frequency of burning influences vegetation 
structure, plant species diversity, and taxonomic com- 
position, with grasses dominating after repeated annual 
burns, and increased forb diversity found at sites with 
longer intervals between fires (Gibson and Hulbert 
1987, Knapp et al. 1998a). Nutrient cycling in tallgrass 
prairie can also be influenced by fire, which in turn 
determines host plant quality to herbivores (Ojima et 
al. 1994, Blair 1997, Turner et al. 1997, Blair et al. 
1998). 

Large vertebrate grazers also play significant roles 
in structuring North American grasslands (Vinton et al. 
1993, Hartnett et al. 1996, 1997, Coppedge and Shaw 
1998, Frank et al. 1998). In North American tallgrass 
prairie, bison (Bos bison L.) and now domesticated 
cattle are the most notable recent grazers, although a 
diverse grazing fauna populated the region as recent as 
10000 years ago (MacFadden 2000). Bison grazing 
leads to a dramatic increase in plant species diversity 
(especially forbs) in response to selective feeding on 
grasses (Vinton et al. 1993, Hartnett et al. 1996, Collins 
et al. 1998, Coppedge and Shaw 1998, Knapp et al. 
1999). Moreover, structurally heterogeneous vegeta- 
tion, variable plant nutritional quality, and altered nu- 
trient cycling rates result from feeding and trampling 
by large mammalian grazers (Blair et al. 1998, Johnson 
and Matchett 2001). 

Grassland arthropod diversity is often linked to het- 
erogeneity in vegetation structure, plant species com- 
position and the general structure and physical com- 
plexity of the habitat (Lawton 1983, 1995, Evans 1984, 
1988a, b, Heidorn and Joern 1987, Kemp et al. 1990, 
Andow 1991, Crisp et al. 1998, Dennis et al. 1998, 
Siemann 1998, Siemann et al. 1998, Knapp et al. 1999, 
Haddad et al. 2000, Kaspari 2000). Because distur- 
bance from grazing and fire has such strong effects on 
vegetation characteristics, responses by arthropod com- 
munities to fire and grazing most likely result from 
indirect responses acting through changes in plant com- 
munity composition and habitat structure (Tscharntke 
and Greiler 1995, Fay 2003). Consequently, under- 
standing determinants of insect species diversity in a 
grassland landscape requires that one consider fire, 
grazing, and topography as well as the indirect means 

by which they affect arthropod species responses (War- 
ren et al. 1987, Meyer et al. 2002). 

The combined effects of large-scale, controlled burns 
of different frequency, bison grazing activity, and to- 

pography on the local diversity of grasshoppers (Or- 
thoptera: Acrididae and Tettigoniidae) in a North 
American tallgrass prairie landscape are examined 
here. Long-term, landscape-level experimental manip- 
ulations of bison grazing and fire using controlled 

spring burns at the Konza Prairie provide an oppor- 
tunity to investigate the importance of landscape-level 
disturbances on grasshopper species diversity. The pri- 
mary hypothesis is that grasshopper diversity increases 
in response to disturbance from bison grazing and burn- 

ing treatments to the degree that habitat heterogeneity 
is increased (Fuhlendorf and Smeins 1999, Fuhlendorf 
and Engle 2001). At issue here is the challenge to un- 
derstand the origin and nature of the underlying mech- 
anisms that promote local species richness of dominant 
insect herbivores in grassland, using North American 

tallgrass prairie as a model. 

METHODS 

Konza Prairie 

The Konza Prairie (near Manhattan, Kansas, USA); 
39005' N, 96035' W) is a tallgrass prairie typical of the 
Kansas Flint Hills, which exhibits a highly variable 
Midwestern United States continental climate consist- 

ing of wet summers and dry, cold winters (Knapp et 
al. 1998b). Konza Prairie is a large, protected research 
site (3487 ha) with long-term, watershed-level burning 
and bison-grazing experimental treatments (Knapp et 
al. 1998b). Mean annual precipitation is 835 mm, most 
of which occurs during the primary growing season. 

Precipitation and net primary productivity (NPP) are 

highly variable among years, and to a lesser degree 
among sites within years. Lower than average precip- 
itation and NPP were seen in 2002. The flora is dom- 
inated by warm-season tallgrass species (e.g., Andro- 

pogon gerardii Vitman and Sorghastrum nutans (L.)); 
mid- and short-grass species can be common on sites 
with shallow soils. Over 300 forb species can be found, 
but grasses contribute -80% to the total biomass. 

Fire interval and grazing treatments applied at the 
watershed level comprise the long-term management 
of the site. Knapp et al. (1998b, 1999) describe in detail 
the Konza Prairie site and the long-term burning and 

grazing treatments (including a map of treatments). 
Watershed boundaries follow natural topographic 
boundaries, and range from an average of 44 + 28.5 
ha (mean + 1 SD; range = 18.98-105.14 ha) for un- 

grazed sites to 97 + 23.3 ha (range = 56.77 -135.45 

ha) for grazed sites. Forty-two sites in 23 landscape 
units of different overall area and scattered throughout 
Konza Prairie were sampled in August 2002; sites in- 
cluded upland vs. lowland topography, different long- 
term burn intervals, and bison grazing vs. no grazing. 
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PLATE 1. Fire and grazing by large ungulates were historically important in tallgrass prairie, and the management of 
both has important ecological consequences for plant and invertebrate communities. To address the role of native grazers, 
and their interactions with fire, bison (Bos bison) were reintroduced in 1987 to a 1000-ha area of the Konza Prairie LTER 
site (pictured above) that includes replicate watersheds burned at 1-, 2-, 4-, and 20-year intervals and a range of topography 
and vegetation types. Photo credit: John Blair. 

For sites sampled here, late-spring prescribed burning 
treatments are applied to replicate watersheds at sched- 
uled intervals of 1, 2, 4, and 20 years. Burning treat- 
ments at Konza Prairie date from 1972 to the present, 
although treatments were initiated simultaneously at all 
sites; replications of treatments were added subse- 
quently as additional land was acquired. Bison were 
introduced in 1987 and the herd increased until 1992 
(see Plate 1). Since 1992, the herd has been maintained 
at approximately 200 individuals, with unrestricted ac- 
cess to a 1012-ha portion of the site, including 10 wa- 
tersheds subjected to the above combination of burn 

frequencies of late-spring prescribed fire. On average, 
bison remove -25% of the aboveground net production 
annually, and -90% of bison diet consists of grasses 
(van Vuren and Bray 1983, Steuter et al. 1995, Hartnett 
et al. 1997). No water or supplemental food is provided 
to bison. 

Long-term manipulations of disturbance to tallgrass 
prairie watersheds were used to assess overall com- 
munity responses of grasshoppers as representative in- 
sect herbivores. Burn frequency and bison grazing are 
considered as categorical treatments in analyses, re- 
flecting the cumulative, long-term effects of treatments 
on vegetation rather than just current year effects. Ad- 

ditional comparisons into mechanisms resulting from 
recent effects of fire and recent grazing complement 
these analyses. Elapsed time since the last fire provides 
insights into responses by grasshopper assemblages to 
recentness of fire; responses to recent fire in longer 
term 2-, 4-, and 20-year treatments that are burned in 
different years can be assessed. Bison roam freely 
among all burn treatments throughout the grazed por- 
tion of Konza Prairie. All watersheds are visited 
throughout the year at irregular and currently unpre- 
dictable schedules, including during the growing sea- 
son, when sites with highly palatable forage are present 
elsewhere. Bison do not graze indiscriminately across 
the landscape or in local areas at Konza Prairie, and 
use of watersheds and portions of watersheds is essen- 
tially independent over the long term (Hartnett et al. 
1997, Knapp et al. 1999). I treated each sampling site 
as an independent event with respect to grazing because 
of these large-scale grazing patterns. 

Grasshopper sampling 
I used sweep net sampling to assess grasshopper spe- 

cies richness (Acrididae and Tettigoniidae); I also in- 
cluded one species of walking stick (Phasmida), which 
is functionally similar although no longer included in 
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the order Orthoptera. Using a 30.5 cm diameter sweep 
net, four standardized 100-sweep transects - 10 m apart 
were made at each site in early August 2002, and com- 
bined for each site. All sampling was performed in an 
area approximately 50 x 100 m that was arbitrarily 
selected but representative of the watershed and to- 

pographic position in question. I sorted grasshoppers 
to species and calculated relative abundances for each 
site; both adults and nymphs were included in esti- 
mates. The Appendix lists species encountered in this 
study using this sampling protocol. Sweeping is the 
best method to estimate species richness and associated 
relative abundances of grasshoppers in tallgrass prairie 
vegetation (Evans et al. 1983). When possible, grass- 
hopper densities (individuals per square meter) were 
estimated by counting the number of grasshoppers in 
a series of 30 0.1-m2 rings at each of four transects per 
site (Onsager and Henry 1977). Individual species den- 
sities were estimated by combining relative abundances 
and total grasshopper densities, which allows responses 
among watersheds to be normalized by overall abun- 
dance in species ordinations. My results are based on 
34 species and 12042 individuals collected in the 

sweep-net transect samples from these 42 sites; density 
estimates were determined at 35 sites. All grasshopper 
samples were taken under sunny conditions with wind 
speed <10m/s. 

Habitat attributes 

Grasshopper communities are known to respond to 
various attributes of the vegetation (Otte 1976, Joern 
and Lawlor 1980, Joern 1982, Kemp et al. 1990). I 
characterized habitat attributes along a 30-m transect 
established arbitrarily at each grasshopper sampling 
site. 

Grass and forb biomass.-Vegetation biomass 
(grams per square meter) was sampled at each site by 
clipping all vegetation along three, 0.1 x 3 m swathes 
randomly located along 30-m transects. Grasses and 
forbs were separated, dried, and weighed. 

Vegetation canopy.-Height to the nearest centi- 
meter was estimated by determining the height of the 
vegetation using a rod graduated in millimeters, a meth- 
od that works well in grassland (Cody 1974, Wiens 
1974, Joern 1982). Twenty measurements were made 
along a 30-m transect. Structural heterogeneity was es- 
timated as the coefficient of variation (cv) based on 
these measurements. 

Plant species richness.-Plant species richness at 
each site was estimated by counting the number of plant 
species in each of ten 0.25-m2 quadrats, randomly lo- 
cated along a 30-m transect. 

Recent grazing.-To gain a sense of the immediate 
impact of grazing on grasshopper assemblages, the in- 
fluence of recent grazing activity on grasshopper di- 
versity was assessed. Recent grazing intensity was clas- 
sified using the level of vegetation grazing, and amount 
and freshness of dung within the immediate sample 

site. Recent grazing activity at each site was classified 
based on an ordinal scale: 0 (nongrazed sites; no evi- 
dence of recent grazing because bison never present); 
1 (no recent grazing but site located in grazed area); 2 

(small amount of grazing evident, probably by one or 
two animals); 3 (moderate grazing from many animals; 

many grazed patches interspersed in ungrazed matrix, 
and evidence of relatively fresh dung); 4 (extensive 
grazing, but grazing lawn not yet developed; evidence 
of large herd grazing activity, including recent dung); 
and 5 (extensive grazing with much return grazing leav- 

ing a closely cropped site and little vertical structure). 
A grazing lawn develops when grazers repeatedly re- 
visit a site, resulting in closely cropped vegetation of 

generally higher nutritional quality (McNaughton 
1984). 

Statistical analyses 

I used general linear models (ANOVA and regression 
using the method of least squares) to evaluate hypoth- 
eses. SAS/STAT (Proc GLM; SAS Institute 1989) was 
used to analyze general linear models. Burn interval 
and grazing were treated as categorical variables in 

analyses. The effect of topography was nested within 
a fire x grazing interaction in an unbalanced design. 

An index of species diversity was calculated using 
the Shannon diversity index (H' = -Ep, In Pi, where 

pi is the proportion of individuals found in the ith spe- 
cies) (Magurran 1988). The Shannon diversity index is 
distributed normally and was used as a dependent var- 
iable in ANOVA (Magurran 1988) to determine how 

burning and grazing affect species diversity. Evenness 
indicates the relative contribution of all species to the 
calculation of the diversity index. Evenness (E) for 
each sample was calculated as: E = H'/ln S (Magurran 
1988), where a value of 1.0 results when all species 
are equally abundant. All variables were transformed 
to assure normality and equal variances among treat- 
ments using square-root (species richness), natural log 
(H') and sin-' square-root (evenness) transformations 
before analyses were performed; results are presented 
in their nontransformed states. 

Ordination of taxonomic composition 

Principal-components analysis (PCA), an eigenana- 
lysis ordination technique that maximizes the variance 

explained by each successive orthogonal axis, was used 
to examine community-level taxonomic responses to 
treatment combination. Differences in site-specific 
scores indicate the degree to which grasshopper com- 
munities have different species or show differences in 
relative abundances of shared species based on the en- 
tire set of species. I used PC-Ord software (McCune 
and Mefford 1999) in the analyses to extract axes that 
summarize the taxonomic composition of each repre- 
sentative grasshopper community for each site. The 
first three PCA axes were assessed using ANOVA to 
determine how regional landscape factors, local factors 
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FIG. 1. Grasshopper species richness and diversity in response to major grassland system drivers are illustrated: (a) effects 
of topography on species richness, and (b-d) effects of fire frequency and grazing on (b) species richness, (c) species diversity 
(H'), and (d) Shannon evenness. Mean values + 1 SE are presented. 

and management practices interact to explain the re- 

sulting grasshopper assemblage composition. 

RESULTS 

Grasshopper species diversity 

Habitat responses to burn frequency and bison graz- 
ing.-Effects of fire and grazing on local vegetation 
was evaluated as grass and forb biomass, plant species 
richness, average canopy height, and the cv of canopy 
height and plant species richness. Grazing had a sig- 
nificant, positive influence on plant species richness 

(R2 = 0.19, P = 0.004) and canopy height heterogeneity 
(R2 = 0.49, P < 0.001), and significant negative effects 
on canopy height (R2 = 0.64, P < 0.001) and grass 
biomass (R2 = 0.24, P < 0.005). The total number of 
fires since treatments began showed a negative effect 
on plant species richness (R2 = 0.47, P < 0.0001), and 
time since last fire showed a significant but weak pos- 
itive influence on canopy height (R2 = 0.12, P = 

0.025). All other possible responses by the six plant 
community attributes specified above showed no sta- 

tistically significant responses to recent grazing, time 
since last fire, or total number of fires. 

Grasshopper species responses.-Over all sites sam- 

pled, average species richness was 16.2 + 7.8 species 
(mean + 1 SD, range 6-24 species), Shannon H' av- 

eraged 1.95 + 0.8 (range 0.96-2.56), and the average 

Shannon Evenness Component (E) was 0.7 + 0.18 

(range 0.42-0.89). I observed no significant difference 
in grasshopper species richness between upland and 
lowland sites (Fig. la; F,26 = 1.25, P > 0.3), or in 

response to fire among sites with different burn inter- 
vals (Fig. lb, F326 = 1.73, P = 0.19; Fig. Ic, F326 = 

0.61, P = 0.62). No significant difference in grass- 
hopper species richness (F2,14 = 1.36, P = 0.29) was 
detected among burn treatments when comparing only 
ungrazed sites. Grasshopper species richness did not 

vary with the total number of fires at a site since treat- 
ments were begun in a watershed (R2 = 0.006, P = 

0.64) or with the time elapsed since the last fire (R2 = 

0.04, P = 0.17). 
Grazing by bison resulted in a significant 42% in- 

crease in grasshopper species richness (Fig. lb, F,26 
= 

35.2, P < 0.0001) and increased H' (Fig. lc, F26 = 

30.36, P < 0.001). No significant interactions were 
observed among any of the long-term treatment com- 
binations. Over a short time scale, grasshopper species 
richness increased with increased level of recent graz- 
ing (Y = 14.43 + 3.43X - 0.42X2; R2 = 0.5, P < 

0.0001). A strong positive relationship between grass- 
hopper species richness and overall grasshopper den- 

sity for the site also resulted (Fig. 2a). Moreover, graz- 
ing affected the species richness-area relationship (Fig. 
2b), where species richness increased with the area in 

grazed watersheds, but not in ungrazed ones. 
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FIG. 2. (a) Grasshopper species richness varies positively 

with overall grasshopper density (all species at a site) (Y = 
1.28 + 1.34X, R2 = 0.53, P < 0.001). Grasshopper density 
was only sampled for 35 of the 42 sites for which grasshopper 
species richness was determined. (b) Grasshopper species 
richness increases with the area of the watershed grazed by 
bison (Y = 12.247 + 0.0838; R2 = 0.33, P = 0.006), but no 
relationship between watershed area and grasshopper species 
richness is observed in ungrazed areas (R2 = 0.000, P = 0.75). 
Data are from the Konza Prairie, Kansas, USA. 

Shannon evenness was similarly affected by bison 
grazing (Fig. Id), where a significant increase in E for 
grasshopper assemblages was detected with bison graz- 
ing (Fl,26 = 14.4, P < 0.0008). No significant response 
by E to burn frequency (F326 = 1.8, P = 0.17) was 

detected, and no interaction between burning and graz- 
ing (F326 = 1.27, P = 0.31) was found. Topographic 
differences in evenness were significant (F8.26 = 2.3, P 
= 0.049), where E varied among grazing x burn fre- 
quency combinations in somewhat idiosyncratic ways 
that defy generalization. A significant decreasing qua- 
dratic relationship exists between species richness and 
Shannon Evenness (Fig. 3) (Adjusted R2 = 0.25; F241 
= 7.73, P = 0.0015), indicating that local assemblages 
with smaller number of species have a small number 
of dominant species, compared to more diverse assem- 
blages which are somewhat more evenly distributed. 

Moreover, E increased marginally with species richness 
in ungrazed sites, but no relationship between species 
richness and E was observed for grazed watersheds 
(Fig. 3). 

Grasshopper species richness responded significant- 
ly to habitat characteristics described by vegetation 
(Fig. 4): negatively with grass biomass, negatively with 

canopy height, positively with heterogeneity in canopy 
height, and positively with plant species richness. No 

significant relationships existed between grasshopper 
species richness and either forb biomass or the vari- 

ability in plant species richness. 

Taxonomic composition of grasshopper communities 

Species composition of grasshopper communities 
varied among sites in response to influences of grazing 
and burning. In a PCA ordination of grasshopper com- 
munities among sites, Axis 1 explained 28.3%, Axis 2 

explained 24.1%, and Axis 3 explained 20.0% of the 
total variation in species composition, a total of 72% 
of the total variation in grasshopper community assem- 

bly among sites. Variation in PCA scores among sites 
for each combination of burn intervals and grazing 
treatments for each of the first three PCA axes is pre- 
sented in Fig. 5. Average PCA scores across treatments 
indicate that taxonomic shifts in grasshopper com- 

munity composition occur in response to grazing and 

burning schedules. ANOVA was performed with the 
main factors of topography, grazing treatment, and con- 
trolled burn intervals (1, 2, 4, 20 years) and all inter- 
actions. No significant effects to species composition 
from burn frequency and grazing were observed for 
PCA Axis 1 (fire: F,25 = 2.1, P = 0.13; grazing: F,25 
= 3.0, P = 0.096). A strong effect of burn interval 

(F3.25 = 10.7, P < 0.001) and a weaker effect from 

grazing (F, 25 = 5.1, P = 0.03) on grasshopper species 
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composition was observed for PCA Axis 2. For PCA 
Axis 3, only controlled burn treatments had a signifi- 
cant effect (F3,25 = 3.4, P = 0.03) on the responses, 
but one that was very different than that seen for PCA 
Axis 2. The main response along PCA Axis 3 indicates 
that assemblages in sites with annual burns differed 
greatly from the other burn treatments, which do not 
differ from one another. No significant interactions 
were observed for any treatment combinations. 

The most common species at Konza Prairie (acridids: 
Phoetaliotes nebrascensis, Melanoplus keeleri, Or- 
phullela speciosa, Melanoplus scudderi, Hypochlora 
alba, and Melanoplus bivittatus; tettigoniids: Cono- 
cephalus sp.; Phasmida: Diapheromerafemorata) were 
dominant in both grazed and ungrazed sites, with only 
small shifts in rank order. The biggest shifts in species 
were large drops in relative abundance of the less abun- 
dant Syrbula admirabilis, Hesperotettix viridis, and 
Ageneotettix deorum in grazed vs. ungrazed sites. Oth- 

erwise, shifts in combinations of mostly uncommon 

species are responsible for the different PCA scores at 
sites with different treatment combinations. Also, un- 
common species dropped out of sites with low species 
richness. Because of big differences in overall density 
in grazed vs. ungrazed sites, uncommon species were 
found at even lower densities in ungrazed sites than 
for grazed sites (Joern 2004). 

DISCUSSION 

Repeated large- and small-scale disturbances result 
in grasslands that are highly variable in time and space 
and have important consequences for the maintenance 
of local species diversity (Coppock et al. 1983, Detling 
1987, Evans 1988a, Collins and Glenn 1991, 1997, 
Collins et al. 1998, Kaufman et al. 1998, Knapp et al. 
1999, Fuhlendorf and Engle 2001). Responses by plant 
communities to fire and large-animal grazing are seen 
in many community types worldwide, and other sources 
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of disturbance (e.g., wind, flooding, landslides) often 
play similar roles with profound impacts on community 
structure as well (Huston 1994). In North American 
tallgrass prairie, grazing interacting with fire, topog- 
raphy, and climate are key drivers responsible for mod- 
ulating vegetation characteristics, including plant spe- 
cies richness and structure (Vinton et al. 1993, Hartnett 
et al. 1997, Collins et al. 1998, Knapp et al. 1999). As 
shown here, these same key grassland drivers also play 
important roles in modulating species richness and tax- 
onomic composition of grasshopper communities, 
which are key insect herbivores in many types of grass- 
land. Such relationships are also important for under- 
standing poorly studied interactions between vertebrate 

and invertebrate consumers in natural communities 
worldwide (Tscharntke and Greiler 1995, Tscharntke 
1997, WallisDeVries et al. 1998, Keesing 2000), mak- 

ing it important to characterize such responses, because 

grazing is ubiquitous worldwide in grasslands. 
Available studies illustrate the sometimes contradic- 

tory responses observed when attempting to assess the 
roles of disturbance from fire and grazing on arthropod 
communities (Warren et al. 1987, Kemp et al. 1990, 
Tscharntke and Greiler 1995, Harper et al. 2000, Swen- 

gel 2001, Panzer 2002, Tscharntke et al. 2002, Stoner 
and Joern 2004). Insect population responses to burn- 

ing in grasslands can be both positive (Tester and Mar- 
shall 1961, Nagel 1973, Evans 1984, Anderson et al. 
1989, Panzer 2002) and negative (Anderson et al. 1989, 
Bock and Bock 1991). In the absence of recent grazing, 
different fire frequencies in Kansas Flint Hills tallgrass 
prairie resulted in increased arthropod abundance and 

species richness, with clear shifts as to which individ- 
ual species dominate (Nagel 1973, Evans 1984, 1988a, 
b, Meyer et al. 2002). Obviously it matters to insects 
when fire occurs in relation to critical exposed life his- 

tory stages, as well as the impact of fire in limiting 
resources (Warren et al. 1987, Swengel 2001). 

Arthropod responses to grazing from a variety of 

grasslands are perhaps less well understood (Morris 
1967, Plumb and Dodd 1993, Tscharntke and Greiler 
1995, Onsager 2000, Gebeyehu and Samways 2003), 
with effects on insect communities as variable as those 
seen for fire. Light or intermediate grazing intensities 
often lead to increased richness of insect species, in- 

cluding grasshoppers (Holmes et al. 1979, Roberts and 
Morton 1985, Onsager 2000, WallisDeVries and Rea- 
makers 2001, Kruess and Tscharntke 2002, Gebeyehu 
and Samways 2003), but not always (Holmes et al. 
1979, Kruess and Tscharntke 2002). While maximum 

species richness may be found at intermediate grazing 
levels, this notion is currently difficult to assess rig- 
orously among sites that differ in potential primary 
productivity and plant species diversity. 

Modulating insect diversity through habitat 

modification from landscape-scale disturbance 

In this study, grasshopper communities from North 
American tallgrass prairie responded strongly to effects 
of bison grazing and spring burning, results consistent 
with related studies (Evans 1984, 1988a, b, Fay 2003). 
Fire had its greatest impact on the taxonomic compo- 
sition of grasshopper communities, whereas grazing 
more strongly influenced both overall species richness 
and evenness as well as actual species composition. 
Grasshopper community responses result primarily 
from indirect effects of disturbance from fire and graz- 
ing on habitat characteristics, including both plant spe- 
cies composition and resulting structural attributes of 

vegetation. 
Fire and grazing caused strong and consistent re- 

sponses affecting habit characteristics, which in turn 
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influenced insect community responses. Based on this 

study, habitat characteristics that maximize grasshop- 
per diversity at Konza Prairie include spatially hetero- 

geneous habitat with open structure, a wide range of 
food plants, heterogeneous structure that provides en- 

emy-free space and a range of sites to facilitate ther- 

moregulation, and plant tissue of high nutritional qual- 
ity. Here, grasshopper species richness showed positive 
relationships with plant species richness and hetero- 

geneity in canopy height, and negative relationships 
with average canopy height and grass biomass, which 
tend to homogenize habitats in this system (Collins et 
al. 1998, Knapp et al. 1998b, 1999). Similar responses 
were seen between density and the habitat attributes of 
grass biomass, average canopy height, and the cv of 

canopy height (Joern 2004). 
Although grasshopper species richness varies with 

increased burn interval in ungrazed grassland in as- 
sociation with greater forb species richness (Evans 
1984, 1988a, b), grazing apparently has a much stron- 
ger influence on grasshopper communities than burning 
at Konza Prairie. A similar result was found for plant 
species richness (Collins et al. 1998) at this site. Final 
grasshopper species richness, H', or evenness was little 
affected by burn frequency in this study. There is clear 
evidence that the underlying dynamics of fire effects 
are relevant for understanding variability of grasshop- 
per communities in time and space as described by 
Evans (1984, 1988a, b), and in the obvious shift in 
taxonomic composition of grasshopper species assem- 
blages. 

Two complementary processes act to facilitate both 
increased overall population size and species rich- 
ness-factors that affect the likelihood of local ex- 
tinction and those that promote more species because 
of increased numbers of resources as expected in a 

heterogeneous habitat. Here, a positive relationship 
was observed between overall grasshopper density and 
species richness. While interpretations linking overall 
density and species richness are potentially tautologi- 
cal, the relationship suggests that factors favorable for 

supporting increased abundances of populations of in- 
dividual species (thus increasing total grasshopper 
numbers) in turn contribute to increased local species 
richness as an independent assembly. This relationship 
is reinforced by an area effect influencing species rich- 
ness. Without additional information, it is not known 
whether or not species interactions play an important 
role in determining species richness or patterns of spe- 
cies coexistence in this context. Results presented here 
are consistent with the idea that local conditions permit 
populations to achieve sufficient size to become self- 
sustaining rather than act as sink populations suscep- 
tible to repeated local extinction. In an independent 
assembly of species model, increased species richness 
then follows as more populations become self-sustain- 
able because of a good match between habitat condi- 
tions and species needs. 

The spatial extent of disturbance at landscape levels 

may often act to increase diversity of consumers (es- 
pecially arthropods) at local scales, but interactions 
with disturbance may be necessary for landscape ef- 
fects to operate. Area effects on species diversity are 
well known for many taxa (Rosenzweig 1995). Here, 
for example, no effect of watershed area on species 
richness was observed without disturbance from graz- 
ing, but was detectable when grazing was operating. 
In part, this may reflect responses of local populations 
and their ability to persist based on population size as 
indicated above. Extinction is more likely in small pop- 
ulations. Bison grazing treatments at Konza Prairie re- 
sult in higher grasshopper abundance overall with pos- 
itive consequences to almost all species (Joern 2004). 
As seen here, more species are found on average at 
sites that support higher overall grasshopper densities, 
and the accompanying evenness component of diver- 

sity is higher at these sites. This suggests that distur- 
bance accompanying grazing redistributes the quality 
and quantity of resources to support increased popu- 
lation sizes of many species, which in turn leads to the 

buildup of greater species diversity. 
As habitat conditions and resources diversify in re- 

sponse to fire and grazing, more taxa can coexist at the 
local scale. Variable grassland vegetation structure cou- 

pled to increased plant species richness increases the 

availability of both resources and suitability of con- 
ditions necessary to support a variety of grasshopper 
populations because of effects on individual grasshop- 
pers and their habitat. Increased structural heteroge- 
neity resulting from recent grazing leads to more open 
habitat structure and an increased number of potential 
food plant species. The generally higher degree of the 
evenness component associated with grazed sites that 

supports higher species richness shown here suggests 
the importance of this link. For example, increased 
evenness of vegetation in a plant community with the 
same species richness resulted in higher densities of 

spittlebug (Wilsey and Polley 2002). 
Several plausible mechanisms that follow directly 

from the above analyses can lead to increased grass- 
hopper species richness. (1) The strong positive rela- 

tionship between insect herbivore species richness and 

plant species suggests that an increase in available food 

types increases the number of species that exist locally 
(Joern 1979, 1983, Lawton 1983), even in largely gen- 
eralist forb-feeding grasshoppers. Increased insect spe- 
cies richness in many systems worldwide is typically 
associated with increased plant species richness (Otte 
1976, Evans 1984, 1988b, Collinge et al. 2003, Ge- 

beyehu and Samways 2003), heterogeneity in local 

vegetation structure (Anderson et al. 1979, Holmes et 
al. 1979, Bock and Bock 1991, Bergman and Chaplin 
1992, WallisDeVries and Reamakers 2001, Kruess and 
Tscharntke 2002), and in some cases responses to dis- 
turbance corresponding to the availability of specific 
host plants needed by insect herbivores. (2) Insect pop- 
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ulations often respond dramatically to thermal char- 
acteristics of their habitats (Kemp 1986, Kemp and 
Onsager 1986, Coxwell and Bock 1995). Spatially het- 
erogeneous habitat with much open microhabitat may 
facilitate thermoregulation by grasshoppers without ex- 
posing them to predators as much as in closed canopy 
habitats. Thermoregulation is important for many in- 
dividual activities and is especially important for main- 
taining digestion efficiency and resource acquisition 
(Yang and Joern 1994a, b). (3) Food plant quality often 
varies directly in response to grazing and fire, from 
affects on nutrient cycling rates, redistribution of soil 
nutrients, leaf regrowth after loss to grazers, and stress 
effects from trampling and soil compaction on leaf 
quality (Frank and Evans 1997, Frank et al. 1998). 
Ultimately, increased food quality could have big ef- 
fects on population abundances and facilitate retention 
of more species. (4) Altered habitat structure may also 
affect the availability of enemy-free space in some 
fashion that affects grasshopper species richness (Law- 
ton 1979, Joern 2002). Combined, relationships such 
as these implicate the importance of landscape-level 
disturbance from large herbivores and fire for deter- 
mining local patterns of species richness of important 
insect herbivores in grasslands. Future studies focusing 
on these underlying mechanisms will further reveal dy- 
namic relationships explaining grasshopper species 
richness. 

General significance 

Results from this study are consistent with an emerg- 
ing paradigm that emphasizes the importance of in- 
creasing disturbance and heterogeneity to promote bio- 
diversity (Biondini et al. 1989, Huston 1994, Fuhlen- 
dorf and Engle 2001). Natural grassland drivers act to 
develop a disturbance hierarchy resulting in significant 
amounts of structural heterogeneity in units ranging 
from small-scale patches to large-scale landscapes. Fire 
influences bison grazing patterns, which in turn deter- 
mine grassland structure and plant species richness 
(Vinton et al. 1993, Pfeiffer and Steuter 1994, Hartnett 
et al. 1996, 1997, van de Koppel et al. 1998), and recent 
grazing activities determine the extent and patchiness 
of subsequent burns. In this sense, diversity can beget 
diversity, although in an indirect fashion. Additional 
studies are needed to work out specific details of these 
responses. Nonetheless, it is clear that the same large- 
scale system drivers that result in increased plant spe- 
cies richness often alter habitats to facilitate arthropod 
existence and increase species diversity. In addition to 
providing insights into the nature of species interac- 
tions that promote diversity at the local scale, results 
of this study indicate the need to develop conservation 
management plans for grasslands that include arthro- 
pod diversity as a goal. Disturbances from fire and 
especially large mammalian grazing are essential for 
maintaining arthropod diversity, and vegetation re- 

sponses to disturbances can be easily monitored to ac- 

complish management goals. 
Perhaps more important is the likelihood that results 

described here are general and reflect responses to dis- 
turbance and habitat heterogeneity in a variety of eco- 

systems worldwide (Huston 1994). The importance of 
habitat heterogeneity and disturbance is known for oth- 
er organisms besides Orthoptera for grasslands as well 
as other systems (Wiens 1974, 1984, Lawton 1983, 
Tscharntke 1997, Crisp et al. 1998, Dennis et al. 1998, 
WallisDeVries et al. 1998, Kaspari 2000). The next 

challenge is to examine responses of consumers to dis- 
turbance in more systems to better understand how dis- 
turbance to vegetation works its way up food webs. 
Disturbance at large scales greatly influences local 

community assemblages. 
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APPENDIX 

A table showing average relative abundances of species considered in the study over sites in watersheds grazed by bison 
and sites in ungrazed watersheds is available in ESA's Electronic Data Archive: Ecological Archives E086-045-A1. 
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